If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-91=0
a = 3; b = -4; c = -91;
Δ = b2-4ac
Δ = -42-4·3·(-91)
Δ = 1108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1108}=\sqrt{4*277}=\sqrt{4}*\sqrt{277}=2\sqrt{277}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{277}}{2*3}=\frac{4-2\sqrt{277}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{277}}{2*3}=\frac{4+2\sqrt{277}}{6} $
| 37=s/7+30 | | -19=-x^2-3 | | 4(2x+9)=-30+10 | | 125=d(298+11) | | 12)-6x=-6x+5(2x+10) | | 2=-81x | | 3/6b=-2 | | 3(x-2)/2=3(x+1)/5 | | 298=125+11d | | 200m-75+62,400=65,925-200m | | 2=-8x1 | | -5(p+1)-p-12=-6(p+4)+7 | | 5x+3(x-13)-6x=-6x+5(2x+10) | | 125=298+11+d | | 14-(5x-1)(2x+3)=17-(10x+1)(x-6)/ | | 3y–5y–18=–2 | | 32=6s-16 | | 34=b-(-19) | | 5m-5(7-m)=-105 | | 33-7x=-3x | | 4x+10+x+20=180 | | 12-(5x-1)(2x+3)=17-(10x+1)(x-6) | | 298=d(125+11) | | 6c–4=16–4c | | t/3+-4=0 | | 125=298+11d | | 1+x=26 | | 12y-8=4(3y-2) | | 4.01+5.6k=-8.15+4K | | 30=3k-66 | | 2x+9+7x=90 | | 6{3x-2}-3{4x+5}=33 |